2025年12月16日

星期二

科学技术
联系我们
江苏省钢铁行业协会
协会地址 : 南京市御道街58-2号 明御大厦703室
咨询热线 : 025-84490768、84487588
协会传真 : 025-84487588、84490768
高性能紧固件钢的开发及未来发展方向

2025-11-13 16:03:57

来源:冶金传媒

浏览167

紧固件被誉为“工业之米”,是应用量最广泛的机械基础件,其性能直接关系到装备的可靠性与安全性。紧固件钢作为用量最大的特殊钢品种,在高端装备制造业中承担着关键角色。在“双碳”目标与高端装备高质量发展的新形势下,紧固件钢的研发正朝着‌高强化、‌绿色化和‌耐热化三大方向演进。本文聚焦这一趋势,探讨高强、绿色及耐热紧固件钢的材料设计、工艺创新与工程应用。

1高强化紧固件钢

高强化是紧固件材料发展的主要趋势。8.8-12.9级紧固件通常利用马氏体相变(如碳素钢、低合金钢、合金钢)、固溶析出(如高温合金)或冷作强化(微合金钢)获得相应的强度和塑性匹配。装备轻量化要求紧固件等级达到13.9级及以上强度,需要解决伴随强度提高带来的疲劳和延迟断裂问题,惠卫军、董瀚等人在42CrMo钢的基础上,通过Nb、V微合金化导入氢陷阱,研制出具有抗疲劳和延迟断裂特性的14.9级紧固件用ADF1超高强钢。德国卡迈锡公司通过等温热处理工艺控制获得贝氏体组织,研制出延迟断裂性能优异的14.8U-17.8U级紧固件。

8.8-12.9级紧固件材料性能的稳定性是共性技术要求。上海大学及上海大学(浙江)高端装备基础件材料研究院高性能钢铁材料团队提出了纯净度、均匀度及组织度控制的理念。纯净度控制包括杂质含量及夹杂物等级;均匀度控制包括带状组织等级、元素偏析以及关键化学元素的过程控制能力;组织度包括晶粒尺寸、组织类型、析出相和微观组织精细结构等。通过冶炼工艺优化,控制SCM435钢的S、P、O、N、H等杂质含量不大于150ppm,夹杂物等级Σ(A+B+C+D)≤3;C、Cr、Mo波动±0.01%,过程能力控制(Cpk)大于1.67,带状组织不大于3级。通过以上方法,制备的紧固件硬度散差小于2HRC,晶粒度等级≥8,在107循环载荷条件下的疲劳极限σA50达到94MPa,满足汽车发动机关键紧固件材料服役要求。

此外,借助M2C与MC碳化物的二次硬化效应,并引入额外氢陷阱,团队还研发出抗氢延迟断裂性能优异的14.8-19.8级紧固件钢。关键的组织度控制单元为M2C和MC碳化物的形态、尺寸和数量,研究了C、Cr、Mo、V合金体系碳化物的合理配比,优化了强度、塑性和韧性的匹配,通过导入氢陷阱显著提高抗延迟断裂性能,如图1所示。

图18.8-19.8系列紧固件耐延迟断裂和典型力学性能

2绿色化紧固件用非调质钢

绿色化紧固件用非调质钢可替代传统调质钢,省略球化退火、调质等工序,减少30%以上能耗。为此,团队开发了8.8-10.9级紧固件用冷作强化非调质钢。主要通过冷作强化提高材料的强度,组织类型和晶粒尺寸是关键的组织度控制单元。非调质钢抗拉强度(Rm)的来源主要为:

(1)式中,为热轧盘条的强度;为冷变形产生的强度增量;为时效处理后的强度增量。

针对8.8-10.9级紧固件性能,利用Nb、V微合金化和控轧控冷工艺控制获得平均晶粒尺寸不大于10μm的铁素体和珠光体组织(如图2),结合相匹配的冷变形和时效处理工艺达到目标性能。

图2紧固件用非调质钢微观组织及强度随不同减面率的变化

3耐热紧固件钢

耐热紧固件钢一般应用于高温工作服役区域,团队开发了耐300-750℃的耐热紧固件钢。以耐高温紧固件用A286合金为例,要求满足650℃持久性能,微观组织是关键控制因素。利用Cr、Ni、V、Ti、Al、Mo、B多形合金化的组织度控制技术开发了A286合金线材,实现固溶强化、沉淀强化[Ni3(Al,Ti)]和晶界碳化物强化效果。按照ASTME292-18进行650℃持久性能测试,结果表明,开发的A286合金线材满足性能要求,如图3所示。

图3A286固溶时效处理后的微观组织及650℃条件下的持久性能

4未来发展方向

紧固件钢的未来发展方向,是要满足现代工业对于更高强度、更长使用寿命、更可靠安全、更轻量化以及更环保的要求。与此同时,还需兼顾航空、深空、深海、深地、极地开发等极端条件下,紧固件用钢在耐蚀、耐高低温等方面的综合性能需求。

AdvancedFastenerSteels:CurrentandComing

Knownasthe"grainofindustry,"fastenersarethemostwidelyusedmechanicalfoundationalcomponents,whoseperformancedirectlydeterminesthereliabilityandsafetyofequipment.Asthemostconsumedspecialsteelvariety,fastenersteelplaysacriticalroleinhigh-endequipmentmanufacturing.Underthenewcontextofdualcarbongoalsandhigh-qualitydevelopmentofadvancedequipment,theresearchanddevelopmentoffastenersteelisadvancingtowardthreekeydirections:high-strengthening,greenmanufacturing,andheatresistance.Thisarticlefocusesonthesetrends,exploringthematerialdesign,processinnovation,andengineeringapplicationsofhigh-strength,green,andheat-resistantfastenersteels.

1High-StrengthFastenerSteels

Highstrengthhaslongbeenadevelopmenttrendinfasteners.Forfastenersofpropertyclasses8.8-12.9,thefatigueproperty,corrosionresistance,anddurabilitydependonthecombinationofstrengthandductility,associatedwiththemartensitictransformationthatoccursinmildsteelandlow/mediumalloyedsteel.Equipmentlight-weightingentailsthatthestrengthoffastenersneedstobefurtherimproved,i.e.propertyclasses≥13.9,nevertheless,thedecreasedfatigueresistanceanddelayedfractureperformance.Grade14.9fastenerwithexcellentresistancetofatigueanddelayedfracturehasbeendevelopedbyDongHanetal,whichismadeof42CrMosteelmicroalloyedwithNbandV.Kamexie(Germany)developed14.8U-17.8Ugradefastenerswithexcellentdelayedfracture,whichisassociatedwiththeformationofbainiteduringisothermaltreatment.

Propertyandstabilityarethetypicaltechnicalrequirementsof8.8-12.9classesfastenersteels.Weputforwardtheconceptsofthecontrolofpurity,homogeneity,andmicrostructure.Specifically,(i)Impuritycontentandinclusioncontrol;(ii)Controlofbandedmicrostructuregrade,elementsegregation,andcontentofprimarychemicalelements;(iii)Adjustmentandcontrolofgrainsize,microstructuretype,precipitates,andfinemicrostructure.ThemeltingprocesswasoptimizedtoreduceimpuritiessuchasS,P,O,N,andHto≤100ppm.Restrictinginclusionlevelssumbelowgrade3.ThefluctuationofC,CrandMoiswithin±0.01%,withCpkexceedingof1.67andbandedmicrostructurecontrolledtograde3orbelow.Thefastenersexhibitedahardnessdispersionoflessthan2HRCandachievedafatiguelimitofapproximately94MPaunder10⁷cyclicloadingconditions,whichmeetstherequirementsforkeyautomotiveenginefasteners.ThecorrespondingdataarepresentedinFig.1.

Fig.1MicrostructureandS-Ncurvefor10.9fastenermaterial

Thedevelopmentoffastenersteelswithsuperiorresistancetohydrogen-induceddelayedfracture(propertyclasses14.8-19.8)entailedutilizingthesecondaryhardeningeffectofM2CandMCcarbidesandtheintroductionofadditionalhydrogentraps.Controlofcarbidemorphology,size,andquantitywascrucial.ByinvestigatingtherationalcarbidechemistrywithintheC-Cr-Mo-Valloysystemandoptimizingthestrength-ductility-toughnesssynergy,asignificantenhancementindelayedfractureresistancewasachieved,asillustratedinFig.2.

Fig.2Delayedfractureresistanceandtypicalmechanicalpropertiesof8.8-19.8seriesfasteners

2Microalloyedfastenersteels

Sincethemicrostructuretypeandgrainsizearethecriticalparametersforstructurecontrol,non-quenchedandtemperedsteelsforfastenersaremainlystrengthenedbycolddrawing.

Thesourceoftensilestrength(Rm)ofnon-quenchedandtemperedsteelisgivenbyequation1,whereisthestrengtheofhot-rolledsteelwire;andaretheincreamentofstrengthaftercolddrawingandaging,respectively.

(1)Micro-alloyingwithNbandVincombinationwithcontrolledrollingandcoolingprocessyieldsamicrostructurecomprisingferriteandpearlitewithagrainsizebelow10μm.Thepropertyisachievedfor8.8-10.9fasteneruseafterthecorrespondingtreatmentofcolddrawingandagingtreatment.

Fig.3Microstructurevolutionandtheeffectofcold-drawnreductiononstrengthfornon-quenchedandtemperedfastenersteel

3Heat-resistantsteelforfasteners

Thermal-resistancefastenersaregenerallyusedinareasoperatingathightemperatures.Wehavedevelopedheat-resistantfastenersteelsthatcanwithstandtemperaturesrangingfrom300°Cto750°C.

Asathermal-resistancefastener,A286mustmeet650°Ccreep-rupturerequirements,whichmicrostructureistheessentialfactor.

Forhigh-temperaturefastenersusedinautomobile,650˚Cdurabilityisoneofthemostimportantfactor,whichiscloselyrelatedtothemicrostructure.WedevelopedA286alloywireonthebasisofpolymorphicalloyingtheory(alloyedwithCr,Ni,V,Ti,Al,Mo,B),inwhichcombinedstrengtheningincludingsolidsolutionstrengthening,precipitation(i.e.Ni3(Al,Ti))hardening,andgrain-boundarystrengtheningisachieved.InaccordancewithASTME292-18,650℃durabilityofA286wasevaluated.TheresultsinFig.4indicatethatasoundpropertyisobtained.

Fig.4Microstructureand650˚CdurabilityofA286alloyaftersolutionandagingtreatment

4Future

Fastenersteels'futuredevelopmentwillmeetmodernindustry'sdemandsforhigherstrength,longerlife,greaterreliability,lighterweightandbetterenvironmentalfriendliness,whilealsoaddressingcomprehensivepropertiessuchascorrosionandtemperatureresistanceunderextremeconditions(aviation,deepspace,deepsea,deepearth,andpolardevelopment)